何为进程
进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。在 Java 中,当我们启动 main 函数时其实就是启动了一个 JVM 的进程,而 main 函数所在的线程就是这个进程中的一个线程,也称主线程。
何为线程
线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享进程的堆和方法区资源,但每个线程有自己的程序计数器、虚拟机栈和本地方法栈,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。
描述线程与进程的关系,区别及优缺点
拥有资源
进程是资源分配的基本单元,但线程不拥有资源,线程可以访问隶属于进程的资源。
调度
线程是独立调度的基本单位,在同一进程中,线程的切换不会引起进程切换,从一个进程中的线程切换到另一个进程中的线程时,会引起进程切换。
系统开销
由于创建或撤销进程时,系统都要为之分配或回收资源,如内存空间、I/O设备等,所付出的开销远大于创建或撤销线程时的开销。在进行进程切换时,涉及当前执行进程CPU环境的保存及新调度进程CPU环境的设置,而线程切换时只需要保存和设置少量寄存器内容,开销很小。
通信方面
线程间可以通过直接读写同一进程中的数据进行通信,但是进程通信需要借助IPC。
从JVM角度来说
一个进程中可以有多个线程,多个线程共享进程的堆和方法区 (JDK1.8 之后的元空间)\资源,但是每个线程有自己的程序计数器、虚拟机栈 和 本地方法栈
程序计数器为什么是私有的:
程序计数器主要有下面两个作用:
- 字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。
- 在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。
需要注意的是,如果执行的是 native 方法,那么程序计数器记录的是 undefined 地址,只有执行的是 Java 代码时程序计数器记录的才是下一条指令的地址。
所以,程序计数器私有主要是为了线程切换后能恢复到正确的执行位置。
虚拟机栈和本地方法栈为什么是私有的:
- 虚拟机栈: 每个 Java 方法在执行的同时会创建一个栈帧用于存储局部变量表、操作数栈、常量池引用等信息。从方法调用直至执行完成的过程,就对应着一个栈帧在 Java 虚拟机栈中入栈和出栈的过程。
- 本地方法栈: 和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。
所以,为了保证线程中的局部变量不被别的线程访问到,虚拟机栈和本地方法栈是线程私有的。
堆和方法区:
堆和方法区是所有线程共享的资源,其中堆是进程中最大的一块内存,主要用于存放新创建的对象 (几乎所有对象都在这里分配内存),方法区主要用于存放已被加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。
并发和并行的区别
- 并发: 同一时间段,多个任务都在执行 (单位时间内不一定同时执行);
- 并行: 单位时间内,多个任务同时执行。
为什么要使用多线程
先从总体上来说:
- 从计算机底层来说: 线程可以比作是轻量级的进程,是程序执行的最小单位,线程间的切换和调度的成本远远小于进程。另外,多核 CPU 时代意味着多个线程可以同时运行,这减少了线程上下文切换的开销。
- 从当代互联网发展趋势来说: 现在的系统动不动就要求百万级甚至千万级的并发量,而多线程并发编程正是开发高并发系统的基础,利用好多线程机制可以大大提高系统整体的并发能力以及性能。
再深入到计算机底层来探讨:
- 单核时代: 在单核时代多线程主要是为了提高单进程利用 CPU 和 IO 系统的效率。 假设只运行了一个 Java 进程的情况,当我们请求 IO 的时候,如果 Java 进程中只有一个线程,此线程被 IO 阻塞则整个进程被阻塞。CPU 和 IO 设备只有一个在运行,那么可以简单地说系统整体效率只有 50%。当使用多线程的时候,一个线程被 IO 阻塞,其他线程还可以继续使用 CPU。从而提高了 Java 进程利用系统资源的整体效率。
- 多核时代: 多核时代多线程主要是为了提高进程利用多核 CPU 的能力。举个例子:假如我们要计算一个复杂的任务,我们只用一个线程的话,不论系统有几个 CPU 核心,都只会有一个 CPU 核心被利用到。而创建多个线程,这些线程可以被映射到底层多个 CPU 上执行,在任务中的多个线程没有资源竞争的情况下,任务执行的效率会有显著性的提高,约等于(单核时执行时间/CPU 核心数)。
使用多线程可能带来什么问题
并发编程的目的就是为了能提高程序的执行效率提高程序运行速度,但是并发编程并不总是能提高程序运行速度的,而且并发编程可能会遇到很多问题,比如:内存泄漏、死锁、线程不安全等等。
线程的生命周期
线程创建之后它将处于 NEW(新建) 状态,调用 start() 方法后开始运行,线程这时候处于 READY(可运行) 状态。可运行状态的线程获得了 CPU 时间片(timeslice)后就处于 RUNNING(运行) 状态。
在操作系统中层面线程有 READY 和 RUNNING 状态,而在 JVM 层面只能看到 RUNNABLE 状态,所以 Java 系统一般将这两个状态统称为 RUNNABLE(运行中) 状态 。
当线程执行 wait()方法之后,线程进入 WAITING(等待) 状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态,而 TIME_WAITING(超时等待) 状态相当于在等待状态的基础上增加了超时限制,比如通过 sleep(long millis)方法或 wait(long millis)方法可以将 Java 线程置于 TIMED WAITING 状态。当超时时间到达后 Java 线程将会返回到 RUNNABLE 状态。当线程调用同步方法时,在没有获取到锁的情况下,线程将会进入到 BLOCKED(阻塞) 状态。线程在执行 Runnable 的run()方法之后将会进入到 TERMINATED(终止) 状态。
上下文切换
线程在执行过程中会有自己的运行条件和状态(也称上下文),比如上文所说到过的程序计数器,栈信息等。当出现如下情况的时候,线程会从占用 CPU 状态中退出。
- 主动让出 CPU,比如调用了
sleep(),wait()等。 - 时间片用完,因为操作系统要防止一个线程或者进程长时间占用CPU导致其他线程或者进程饿死。
- 调用了阻塞类型的系统中断,比如请求 IO,线程被阻塞。
- 被终止或结束运行
这其中前三种都会发生线程切换,线程切换意味着需要保存当前线程的上下文,留待线程下次占用 CPU 的时候恢复现场。并加载下一个将要占用 CPU 的线程上下文。这就是所谓的 上下文切换。
上下文切换是现代操作系统的基本功能,因其每次需要保存信息恢复信息,这将会占用 CPU,内存等系统资源进行处理,也就意味着效率会有一定损耗,如果频繁切换就会造成整体效率低下。
是什么是线程死锁,如何避免死锁
线程死锁描述的是这样一种情况:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。
1 | public class DeadLockDemo { |
线程 A 通过 synchronized (resource1) 获得 resource1 的监视器锁,然后通过Thread.sleep(1000);让线程 A 休眠 1s 为的是让线程 B 得到执行然后获取到 resource2 的监视器锁。线程 A 和线程 B 休眠结束了都开始企图请求获取对方的资源,然后这两个线程就会陷入互相等待的状态,这也就产生了死锁。上面的例子符合产生死锁的四个必要条件。
学过操作系统的朋友都知道产生死锁必须具备以下四个条件:
- 互斥:每个资源要么已经分配给了一个进程,要么就是可用的
- 占有和等待:已经得到了某个资源的进程可以再请求新的资源
- 不可抢占:已经分配给一个进程的资源不能强制性地被抢占,它只能被占有它的进程显示地释放。
- 环路等待:有两个或两个以上的进程组成一条环路,该环路中的每个进程都在等待下一个进程所占有的资源。
如何预防和避免死锁
如何预防死锁? 破坏死锁的产生的必要条件即可:
- 破坏请求与保持条件 :一次性申请所有的资源。
- 破坏不剥夺条件 :占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源。
- 破坏循环等待条件 :靠按序申请资源来预防。按某一顺序申请资源,释放资源则反序释放。破坏循环等待条件。
如何避免死锁?
避免死锁就是在资源分配时,借助于算法(比如银行家算法)对资源分配进行计算评估,使其进入安全状态。
安全状态指的是系统能够按照某种进行推进顺序(P1、P2、P3…..Pn)来为每个进程分配所需资源,直到满足每个进程对资源的最大需求,使每个进程都可顺利完成。称
sleep()方法wait()方法区别
- 两者最主要的区别在于:
sleep()方法没有释放锁,而wait()方法释放了锁 。 - 两者都可以暂停线程的执行。
wait()通常被用于线程间交互/通信,sleep()通常被用于暂停执行。wait()方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的notify()或者notifyAll()方法。sleep()方法执行完成后,线程会自动苏醒。或者可以使用wait(long timeout)超时后线程会自动苏醒。
为什么调用start()方法时会执行run()方法,为什么不能直接调用run()方法
new 一个 Thread,线程进入了新建状态。调用 start()方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 start() 会执行线程的相应准备工作,然后自动执行 run() 方法的内容,这是真正的多线程工作。 但是,直接执行 run() 方法,会把 run() 方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。
总结: 调用 start() 方法方可启动线程并使线程进入就绪状态,直接执行 run() 方法的话不会以多线程的方式执行。
对Synchronized关键字的了解
synchronized 关键字解决的是多个线程之间访问资源的同步性,synchronized关键字可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。
另外,在 Java 早期版本中,synchronized 属于 重量级锁,效率低下。
因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock 来实现的,Java 的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高。
庆幸的是在 Java 6 之后 Java 官方对从 JVM 层面对 synchronized 较大优化,所以现在的 synchronized 锁效率也优化得很不错了。JDK1.6 对锁的实现引入了大量的优化,如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销。
所以,你会发现目前的话,不论是各种开源框架还是 JDK 源码都大量使用了 synchronized 关键字。
你是如何使用Synchronized关键字
synchronized 关键字最主要的三种使用方式:
1.修饰实例方法: 作用于当前对象实例加锁,进入同步代码前要获得 当前对象实例的锁
1 | synchronized void method() { |
2.修饰静态方法: 也就是给当前类加锁,会作用于类的所有对象实例 ,进入同步代码前要获得 当前 class 的锁。因为静态成员不属于任何一个实例对象,是类成员( _static 表明这是该类的一个静态资源,不管 new 了多少个对象,只有一份_)。所以,如果一个线程 A 调用一个实例对象的非静态 synchronized 方法,而线程 B 需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁。
1 | synchronized static void method() { |
3.修饰代码块 :指定加锁对象,对给定对象/类加锁。synchronized(this|object) 表示进入同步代码库前要获得给定对象的锁。synchronized(类.class) 表示进入同步代码前要获得 当前 class 的锁
1 | synchronized(this) { |
总结:
synchronized关键字加到static静态方法和synchronized(class)代码块上都是是给 Class 类上锁。synchronized关键字加到实例方法上是给对象实例上锁。- 尽量不要使用
synchronized(String a)因为 JVM 中,字符串常量池具有缓存功能!
单例模式了解吗?来给我手写一下!给我解释一下双重检验锁方式实现单例模式的原理呗!
1 | public class Singleton{ |
另外,需要注意 singleton 采用 volatile 关键字修饰也是很有必要。
singleton 采用 volatile 关键字修饰也是很有必要的, singleton = new Singleton(); 这段代码其实是分为三步执行:
- 为
singleton分配内存空间 - 初始化
singleton - 将
singleton指向分配的内存地址
但是由于 JVM 具有指令重排的特性,执行顺序有可能变成 1->3->2。指令重排在单线程环境下不会出现问题,但是在多线程环境下会导致一个线程获得还没有初始化的实例。例如,线程 T1 执行了 1 和 3,此时 T2 调用 getSingleton() 后发现 singleton 不为空,因此返回 singleton,但此时 singleton 还未被初始化。
使用 volatile 可以禁止 JVM 的指令重排,保证在多线程环境下也能正常运行。
构造方法可以使用synchronized关键字修饰么
先说结论:构造方法不能使用 synchronized 关键字修饰。
构造方法本身就属于线程安全的,不存在同步的构造方法一说。
synchronized关键字的底层原理
synchronized同步语句块的情况
synchronized 同步语句块的实现使用的是 monitorenter 和 monitorexit 指令,其中 monitorenter 指令指向同步代码块的开始位置,monitorexit 指令则指明同步代码块的结束位置。
当执行 monitorenter 指令时,线程试图获取锁也就是获取 对象监视器 monitor 的持有权。
在 Java 虚拟机(HotSpot)中,Monitor 是基于 C++实现的,由ObjectMonitor实现的。每个对象中都内置了一个
ObjectMonitor对象。另外,
wait/notify等方法也依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。
在执行monitorenter时,会尝试获取对象的锁,如果锁的计数器为 0 则表示锁可以被获取,获取后将锁计数器设为 1 也就是加 1。
在执行 monitorexit 指令后,将锁计数器设为 0,表明锁被释放。如果获取对象锁失败,那当前线程就要阻塞等待,直到锁被另外一个线程释放为止。
synchronized修饰方法的情况
synchronized 修饰的方法并没有 monitorenter 指令和 monitorexit 指令,取得代之的确实是 ACC_SYNCHRONIZED 标识,该标识指明了该方法是一个同步方法。JVM 通过该 ACC_SYNCHRONIZED 访问标志来辨别一个方法是否声明为同步方法,从而执行相应的同步调用。
总结
synchronized 同步语句块的实现使用的是 monitorenter 和 monitorexit 指令,其中 monitorenter 指令指向同步代码块的开始位置,monitorexit 指令则指明同步代码块的结束位置。
synchronized 修饰的方法并没有 monitorenter 指令和 monitorexit 指令,取得代之的确实是 ACC_SYNCHRONIZED 标识,该标识指明了该方法是一个同步方法。
不过两者的本质都是对对象监视器 monitor 的获取。
JDK1.6之后的synchronized关键字底层做了哪些优化、
JDK1.6 对锁的实现引入了大量的优化,如偏向锁、轻量级锁、自旋锁、适应性自旋锁、锁消除、锁粗化等技术来减少锁操作的开销。
锁主要存在四种状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,他们会随着竞争的激烈而逐渐升级。注意锁可以升级不可降级,这种策略是为了提高获得锁和释放锁的效率。
偏向锁
偏向锁是针对于一个线程而言的, 线程获得锁之后就不会再有解锁等操作了, 这样可以省略很多开销. 假如有两个线程来竞争该锁话, 那么偏向锁就失效了, 进而升级成轻量级锁了.
为什么要这样做呢? 因为经验表明, 其实大部分情况下, 都会是同一个线程进入同一块同步代码块的. 这也是为什么会有偏向锁出现的原因.
在Jdk1.6中, 偏向锁的开关是默认开启的, 适用于只有一个线程访问同步块的场景.
偏向锁的加锁
当一个线程访问同步块并获取锁时, 会在锁对象的对象头和栈帧中的锁记录里存储锁偏向的线程ID, 以后该线程进入和退出同步块时不需要进行CAS操作来加锁和解锁, 只需要简单的测试一下锁对象的对象头的MarkWord里是否存储着指向当前线程的偏向锁(线程ID是当前线程), 如果测试成功, 表示线程已经获得了锁; 如果测试失败, 则需要再测试一下MarkWord中偏向锁的标识是否设置成1(表示当前是偏向锁), 如果没有设置, 则使用CAS竞争锁, 如果设置了, 则尝试使用CAS将锁对象的对象头的偏向锁指向当前线程.
偏向锁的撤销
偏向锁使用了一种等到竞争出现才释放锁的机制, 所以当其他线程尝试竞争偏向锁时, 持有偏向锁的线程才会释放锁. 偏向锁的撤销需要等到全局安全点(在这个时间点上没有正在执行的字节码). 首先会暂停持有偏向锁的线程, 然后检查持有偏向锁的线程是否存活, 如果线程不处于活动状态, 则将锁对象的对象头设置为无锁状态; 如果线程仍然活着, 则锁对象的对象头中的MarkWord和栈中的锁记录要么重新偏向于其它线程要么恢复到无锁状态, 最后唤醒暂停的线程(释放偏向锁的线程).
总结
偏向锁在Java6及更高版本中是默认启用的, 但是它在程序启动几秒钟后才激活. 可以使用-XX:BiasedLockingStartupDelay=0来关闭偏向锁的启动延迟, 也可以使用-XX:-UseBiasedLocking=false来关闭偏向锁, 那么程序会直接进入轻量级锁状态.
轻量级锁
当出现有两个线程来竞争锁的话, 那么偏向锁就失效了, 此时锁就会膨胀, 升级为轻量级锁.
轻量级锁加锁
线程在执行同步块之前, JVM会先在当前线程的栈帧中创建用户存储锁记录的空间, 并将对象头中的MarkWord复制到锁记录中. 然后线程尝试使用CAS将对象头中的MarkWord替换为指向锁记录的指针. 如果成功, 当前线程获得锁; 如果失败, 表示其它线程竞争锁, 当前线程便尝试使用自旋来获取锁, 之后再来的线程, 发现是轻量级锁, 就开始进行自旋.
轻量级锁解锁
轻量级锁解锁时, 会使用原子的CAS操作将当前线程的锁记录替换回到对象头, 如果成功, 表示没有竞争发生; 如果失败, 表示当前锁存在竞争, 锁就会膨胀成重量级锁.

总结
总结一下加锁解锁过程, 有线程A和线程B来竞争对象c的锁(如: synchronized(c){} ), 这时线程A和线程B同时将对象c的MarkWord复制到自己的锁记录中, 两者竞争去获取锁, 假设线程A成功获取锁, 并将对象c的对象头中的线程ID(MarkWord中)修改为指向自己的锁记录的指针, 这时线程B仍旧通过CAS去获取对象c的锁, 因为对象c的MarkWord中的内容已经被线程A改了, 所以获取失败. 此时为了提高获取锁的效率, 线程B会循环去获取锁, 这个循环是有次数限制的, 如果在循环结束之前CAS操作成功, 那么线程B就获取到锁, 如果循环结束依然获取不到锁, 则获取锁失败, 对象c的MarkWord中的记录会被修改为重量级锁, 然后线程B就会被挂起, 之后有线程C来获取锁时, 看到对象c的MarkWord中的是重量级锁的指针, 说明竞争激烈, 直接挂起.
解锁时, 线程A尝试使用CAS将对象c的MarkWord改回自己栈中复制的那个MarkWord, 因为对象c中的MarkWord已经被指向为重量级锁了, 所以CAS失败. 线程A会释放锁并唤起等待的线程, 进行新一轮的竞争.
说说synchronized和ReentrantLock的区别
两者都是可重入锁
“可重入锁” 指的是自己可以再次获取自己的内部锁。比如一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果不可锁重入的话,就会造成死锁。同一个线程每次获取锁,锁的计数器都自增 1,所以要等到锁的计数器下降为 0 时才能释放锁。
synchronized依赖于JVM而ReentrantLock依赖于API
synchronized 是依赖于 JVM 实现的,前面我们也讲到了 虚拟机团队在 JDK1.6 为 synchronized 关键字进行了很多优化,但是这些优化都是在虚拟机层面实现的,并没有直接暴露给我们。ReentrantLock 是 JDK 层面实现的(也就是 API 层面,需要 lock() 和 unlock() 方法配合 try/finally 语句块来完成),所以我们可以通过查看它的源代码,来看它是如何实现的。
ReentrantLock比synchronized增加了一些高级功能
相比synchronized,ReentrantLock增加了一些高级功能。主要来说主要有三点:
- 等待可中断 :
ReentrantLock提供了一种能够中断等待锁的线程的机制,通过lock.lockInterruptibly()来实现这个机制。也就是说正在等待的线程可以选择放弃等待,改为处理其他事情。 - 可实现公平锁 :
ReentrantLock可以指定是公平锁还是非公平锁。而synchronized只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。ReentrantLock默认情况是非公平的,可以通过ReentrantLock类的ReentrantLock(boolean fair)构造方法来制定是否是公平的。 - 可实现选择性通知(锁可以绑定多个条件):
synchronized关键字与wait()和notify()/notifyAll()方法相结合可以实现等待/通知机制。ReentrantLock类当然也可以实现,但是需要借助于Condition接口与newCondition()方法。
volatile关键字
CPU缓存模型
为什么要弄一个 CPU 高速缓存呢?
类比我们开发网站后台系统使用的缓存(比如 Redis)是为了解决程序处理速度和访问常规关系型数据库速度不对等的问题。 CPU 缓存则是为了解决 CPU 处理速度和内存处理速度不对等的问题。
我们甚至可以把 内存可以看作外存的高速缓存,程序运行的时候我们把外存的数据复制到内存,由于内存的处理速度远远高于外存,这样提高了处理速度。
CPU Cache 的工作方式:
先复制一份数据到 CPU Cache 中,当 CPU 需要用到的时候就可以直接从 CPU Cache 中读取数据,当运算完成后,再将运算得到的数据写回 Main Memory 中。但是,这样存在 内存缓存不一致性的问题 !比如我执行一个 i++操作的话,如果两个线程同时执行的话,假设两个线程从 CPU Cache 中读取的 i=1,两个线程做了 1++运算完之后再写回 Main Memory 之后 i=2,而正确结果应该是 i=3。
CPU 为了解决内存缓存不一致性问题可以通过制定缓存一致协议或者其他手段来解决。
JMM模型
在 JDK1.2 之前,Java 的内存模型实现总是从主存(即共享内存)读取变量,是不需要进行特别的注意的。而在当前的 Java 内存模型下,线程可以把变量保存本地内存(比如机器的寄存器)中,而不是直接在主存中进行读写。这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的拷贝,造成数据的不一致。
要解决这个问题,就需要把变量声明为 volatile ,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。
所以,volatile 关键字 除了防止 JVM 的指令重排 ,还有一个重要的作用就是保证变量的可见性。
并发编程的三个重要特性
- 原子性 : 一个的操作或者多次操作,要么所有的操作全部都得到执行并且不会收到任何因素的干扰而中断,要么所有的操作都执行,要么都不执行。
synchronized可以保证代码片段的原子性。 - 可见性 :当一个变量对共享变量进行了修改,那么另外的线程都是立即可以看到修改后的最新值。
volatile关键字可以保证共享变量的可见性。 - 有序性 :代码在执行的过程中的先后顺序,Java 在编译器以及运行期间的优化,代码的执行顺序未必就是编写代码时候的顺序。
volatile关键字可以禁止指令进行重排序优化。
说说synchronized关键字和volatile关键字的区别
synchronized 关键字和 volatile 关键字是两个互补的存在,而不是对立的存在!
volatile关键字是线程同步的轻量级实现,所以volatile性能肯定比synchronized关键字要好 。但是volatile关键字只能用于变量而synchronized关键字可以修饰方法以及代码块 。volatile关键字能保证数据的可见性,但不能保证数据的原子性。synchronized关键字两者都能保证。volatile关键字主要用于解决变量在多个线程之间的可见性,而synchronized关键字解决的是多个线程之间访问资源的同步性。
ThreadLocal简介
通常情况下,我们创建的变量是可以被任何一个线程访问并修改的。如果想实现每一个线程都有自己的专属本地变量该如何解决呢? JDK 中提供的ThreadLocal类正是为了解决这样的问题。 ThreadLocal类主要解决的就是让每个线程绑定自己的值,可以将ThreadLocal类形象的比喻成存放数据的盒子,盒子中可以存储每个线程的私有数据。
如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的本地副本,这也是ThreadLocal变量名的由来。他们可以使用 get() 和 set() 方法来获取默认值或将其值更改为当前线程所存的副本的值,从而避免了线程安全问题。
ThreadLocal示例
1 | import java.text.SimpleDateFormat; |
ThreadLocal原理
ThreadLocal内存泄露问题
为什么要使用线程池
线程池提供了一种限制和管理资源(包括执行一个任务)。 每个线程池还维护一些基本统计信息,例如已完成任务的数量。
这里借用《Java 并发编程的艺术》提到的来说一下使用线程池的好处:
- 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
- 提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
- 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
实现Runnable接口和Callable接口的区别
Runnable自 Java 1.0 以来一直存在,但Callable仅在 Java 1.5 中引入,目的就是为了来处理Runnable不支持的用例。Runnable 接口 不会返回结果或抛出检查异常,但是 Callable 接口 可以。所以,如果任务不需要返回结果或抛出异常推荐使用 Runnable 接口 ,这样代码看起来会更加简洁。
1 |
|
1 |
|
如何创建线程池
《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险
Executors 返回线程池对象的弊端如下:
- FixedThreadPool 和 SingleThreadExecutor : 允许请求的队列长度为 Integer.MAX_VALUE ,可能堆积大量的请求,从而导致 OOM。
- CachedThreadPool 和 ScheduledThreadPool : 允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。
通过构造方法来实现
通过Executor框架的工具类Executors类来实现
我们可以创建三种类型的 ThreadPoolExecutor:
- FixedThreadPool : 该方法返回一个固定线程数量的线程池。该线程池中的线程数量始终不变。当有一个新的任务提交时,线程池中若有空闲线程,则立即执行。若没有,则新的任务会被暂存在一个任务队列中,待有线程空闲时,便处理在任务队列中的任务。
- SingleThreadExecutor: 方法返回一个只有一个线程的线程池。若多余一个任务被提交到该线程池,任务会被保存在一个任务队列中,待线程空闲,按先入先出的顺序执行队列中的任务。
- CachedThreadPool: 该方法返回一个可根据实际情况调整线程数量的线程池。线程池的线程数量不确定,但若有空闲线程可以复用,则会优先使用可复用的线程。若所有线程均在工作,又有新的任务提交,则会创建新的线程处理任务。所有线程在当前任务执行完毕后,将返回线程池进行复用。
ThreadPoolExecutor类分析
ThreadPoolExecutor 类中提供的四个构造方法。我们来看最长的那个,其余三个都是在这个构造方法的基础上产生(其他几个构造方法说白点都是给定某些默认参数的构造方法比如默认制定拒绝策略是什么),这里就不贴代码讲了,比较简单。
1 | /** |
ThreadPoolExecutor 3 个最重要的参数:
corePoolSize: 核心线程数线程数定义了最小可以同时运行的线程数量。maximumPoolSize: 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。workQueue: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。
ThreadPoolExecutor其他常见参数:
keepAliveTime:当线程池中的线程数量大于corePoolSize的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了keepAliveTime才会被回收销毁;unit:keepAliveTime参数的时间单位。threadFactory:executor 创建新线程的时候会用到。handler:饱和策略。
ThreadPoolExecutor饱和策略
ThreadPoolExecutor 饱和策略定义:
如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任务时,ThreadPoolTaskExecutor 定义一些策略:
ThreadPoolExecutor.AbortPolicy: 抛出RejectedExecutionException来拒绝新任务的处理。ThreadPoolExecutor.CallerRunsPolicy: 调用执行自己的线程运行任务,也就是直接在调用execute方法的线程中运行(run)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。ThreadPoolExecutor.DiscardPolicy: 不处理新任务,直接丢弃掉。ThreadPoolExecutor.DiscardOldestPolicy: 此策略将丢弃最早的未处理的任务请求。
简单的线程池Demo
1 | import java.util.Date; |
1 | import java.util.concurrent.ArrayBlockingQueue; |
线程池原理分析
提交任务时判断核心线程池是否已满,若没满则直接创建线程;
核心线程池满了判断等待队列是否已满,若没满则直接加入等待队列;
若等待队列满了,判断线程池是否已满,若没满则直接创建线程;
否则直接按照饱和策略处理。
介绍一下Atomic原子类
Atomic 翻译成中文是原子的意思。在化学上,我们知道原子是构成一般物质的最小单位,在化学反应中是不可分割的。在我们这里 Atomic 是指一个操作是不可中断的。即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程干扰。
所以,所谓原子类说简单点就是具有原子/原子操作特征的类。
JUC包中的原子类是哪4类
基本类型
使用原子的方式更新基本类型
AtomicInteger:整形原子类AtomicLong:长整型原子类AtomicBoolean:布尔型原子类
数组类型
使用原子的方式更新数组里的某个元素
AtomicIntegerArray:整形数组原子类AtomicLongArray:长整形数组原子类AtomicReferenceArray:引用类型数组原子类
引用类型
AtomicReference:引用类型原子类AtomicStampedReference:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于解决原子的更新数据和数据的版本号,可以解决使用 CAS 进行原子更新时可能出现的 ABA 问题。AtomicMarkableReference:原子更新带有标记位的引用类型
对象的属性修改类型
AtomicIntegerFieldUpdater:原子更新整形字段的更新器AtomicLongFieldUpdater:原子更新长整形字段的更新器AtomicReferenceFieldUpdater:原子更新引用类型字段的更新器
AtomicInteger的使用
AtomicInteger 类常用方法
1 | public final int get() //获取当前的值 |
AtomicInteger 类的使用示例
使用 AtomicInteger 之后,不用对 increment() 方法加锁也可以保证线程安全。
1 | class AtomicIntegerTest { |
介绍一下AtomicInteger类的原理
AtomicInteger 线程安全原理简单分析
AtomicInteger 类的部分源码:
1 | // setup to use Unsafe.compareAndSwapInt for updates(更新操作时提供“比较并替换”的作用) |
AtomicInteger 类主要利用 CAS (compare and swap) + volatile 和 native 方法来保证原子操作,从而避免 synchronized 的高开销,执行效率大为提升。
CAS 的原理是拿期望的值和原本的一个值作比较,如果相同则更新成新的值。UnSafe 类的 objectFieldOffset() 方法是一个本地方法,这个方法是用来拿到“原来的值”的内存地址,返回值是 valueOffset。另外 value 是一个 volatile 变量,在内存中可见,因此 JVM 可以保证任何时刻任何线程总能拿到该变量的最新值。
AQS介绍
AQS 的全称为(AbstractQueuedSynchronizer),这个类在java.util.concurrent.locks包下面。
AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 ReentrantLock,Semaphore,其他的诸如 ReentrantReadWriteLock,SynchronousQueue,FutureTask 等等皆是基于 AQS 的。当然,我们自己也能利用 AQS 非常轻松容易地构造出符合我们自己需求的同步器。
AQS原理概览
AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 CLH 队列锁实现的,即将暂时获取不到锁的线程加入到队列中。
CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。
AQS 使用一个 int 成员变量来表示同步状态,通过内置的 FIFO 队列来完成获取资源线程的排队工作。AQS 使用 CAS 对该同步状态进行原子操作实现对其值的修改。
1 | private volatile int state;//共享变量,使用volatile修饰保证线程可见性 |
状态信息通过 protected 类型的 getState,setState,compareAndSetState 进行操作
1 |
|
AQS对资源的共享方式
AQS 定义两种资源共享方式
Exclusive
(独占):只有一个线程能执行,如ReentrantLock。又可分为公平锁和非公平锁:
- 公平锁:按照线程在队列中的排队顺序,先到者先拿到锁
- 非公平锁:当线程要获取锁时,无视队列顺序直接去抢锁,谁抢到就是谁的
Share(共享):多个线程可同时执行,如
CountDownLatch、Semaphore、CyclicBarrier、ReadWriteLock。
ReentrantReadWriteLock 可以看成是组合式,因为 ReentrantReadWriteLock 也就是读写锁允许多个线程同时对某一资源进行读。
不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS 已经在顶层实现好了。
AQS底层使用了模板方法模式
同步器的设计是基于模板方法模式的,如果需要自定义同步器一般的方式是这样(模板方法模式很经典的一个应用):
- 使用者继承
AbstractQueuedSynchronizer并重写指定的方法。(这些重写方法很简单,无非是对于共享资源 state 的获取和释放) - 将 AQS 组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。
这和我们以往通过实现接口的方式有很大区别,这是模板方法模式很经典的一个运用。
AQS 使用了模板方法模式,自定义同步器时需要重写下面几个 AQS 提供的模板方法:
1 | isHeldExclusively()//该线程是否正在独占资源。只有用到condition才需要去实现它。 |
默认情况下,每个方法都抛出 UnsupportedOperationException。 这些方法的实现必须是内部线程安全的,并且通常应该简短而不是阻塞。AQS 类中的其他方法都是 final ,所以无法被其他类使用,只有这几个方法可以被其他类使用。
以 ReentrantLock 为例,state 初始化为 0,表示未锁定状态。A 线程 lock()时,会调用 tryAcquire()独占该锁并将 state+1。此后,其他线程再 tryAcquire()时就会失败,直到 A 线程 unlock()到 state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A 线程自己是可以重复获取此锁的(state 会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证 state 是能回到零态的。
再以 CountDownLatch 以例,任务分为 N 个子线程去执行,state 也初始化为 N(注意 N 要与线程个数一致)。这 N 个子线程是并行执行的,每个子线程执行完后countDown() 一次,state 会 CAS(Compare and Swap)减 1。等到所有子线程都执行完后(即 state=0),会 unpark()主调用线程,然后主调用线程就会从 await() 函数返回,继续后余动作。
一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。但 AQS 也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。
AQS组件总结
Semaphore(信号量)-允许多个线程同时访问:synchronized和ReentrantLock都是一次只允许一个线程访问某个资源,Semaphore(信号量)可以指定多个线程同时访问某个资源。CountDownLatch(倒计时器):CountDownLatch是一个同步工具类,用来协调多个线程之间的同步。这个工具通常用来控制线程等待,它可以让某一个线程等待直到倒计时结束,再开始执行。CyclicBarrier(循环栅栏):CyclicBarrier和CountDownLatch非常类似,它也可以实现线程间的技术等待,但是它的功能比CountDownLatch更加复杂和强大。主要应用场景和CountDownLatch类似。CyclicBarrier的字面意思是可循环使用(Cyclic)的屏障(Barrier)。它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。CyclicBarrier默认的构造方法是CyclicBarrier(int parties),其参数表示屏障拦截的线程数量,每个线程调用await()方法告诉CyclicBarrier我已经到达了屏障,然后当前线程被阻塞。